Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`Γ(3/2)`
विकल्प
`sqrt(pi)`
`sqrt(pi)/2`
`2sqrt(pi)`
`3/2`
MCQ
उत्तर
`sqrt(pi)/2`
shaalaa.com
Definite Integrals
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]
\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]
\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\] is equal to
\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\] is equal to
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`