हिंदी

Π / 2 ∫ 0 D X a Cos X + B Sin X a , B > 0 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

उत्तर

\[\int_0^\frac{\pi}{2} \frac{1}{a\cos x + b \sin x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{a\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + b\left( \frac{2\tan\frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{a - a \tan^2 \frac{x}{2} + 2b \tan\frac{x}{2}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{se c^2 \frac{x}{2}}{a - ata n^2 \frac{x}{2} + 2b tan\frac{x}{2}}dx\]
\[Let\ \tan\frac{x}{2} = t, Then, \frac{1}{2}se c^2 \frac{x}{2}dx = dt\]
\[When\ x = 0, t = 0, x = \frac{\pi}{2}, t = 1\]
\[\text{Therefore the integral becomes}\]
\[I = \int_0^1 \frac{2dt}{a - {at}^2 + 2bt}\]
\[ = \int_0^1 \frac{2dt}{- a\left[ t^2 - \frac{2bt}{a} - 1 \right]}\]
\[ = \frac{2}{a} \int_0^1 \frac{dt}{- \left[ \left( t - \frac{b}{a} \right)^2 - 1 - \frac{b^2}{a^2} \right]}\]
\[ = \frac{2}{a} \int_0^1 \frac{dt}{\left( \frac{b^2}{a^2} + 1 \right) - \left( t - \frac{b}{a} \right)^2}\]
\[ = \frac{2}{a}\left[ \frac{1}{2\sqrt{\frac{a^2 + b^2}{a^2}}} \left( \log\left| \frac{\sqrt{\frac{a^2 + b^2}{a^2}} + \left( t - \frac{b}{a} \right)}{\sqrt{\frac{a^2 + b^2}{a^2}} - \left( t - \frac{b}{a} \right)} \right| \right)_0^1 \right]\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 19 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_1^e \log x\ dx =\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following:

Γ(4)


Evaluate the following:

`int_0^oo "e"^(-4x) x^4  "d"x`


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

If n > 0, then Γ(n) is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×