हिंदी

Π / 2 ∫ 0 Sin X Cos X 1 + Sin 4 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

उत्तर

\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{1 + \sin^4 x} d x . \]
\[Let\ \sin x\ = t\ . Then\, \cos x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 \frac{t}{1 + t^4} d t\]
\[Let\ t^2 = u . Then, 2t\ dt = du\]
\[So, I = \int_0^1 \frac{t}{1 + t^4} d t \]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \frac{1}{1 + u^2} d u\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} u \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{8}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 18 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int_0^1 | x\sin \pi x | dx\]

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_1^2 x\sqrt{3x - 2} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Choose the correct alternative:

`Γ(3/2)`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×