Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{1 + \sin^4 x} d x . \]
\[Let\ \sin x\ = t\ . Then\, \cos x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{2}, t = 1\]
\[ \therefore I = \int_0^1 \frac{t}{1 + t^4} d t\]
\[Let\ t^2 = u . Then, 2t\ dt = du\]
\[So, I = \int_0^1 \frac{t}{1 + t^4} d t \]
\[ \Rightarrow I = \frac{1}{2} \int_0^1 \frac{1}{1 + u^2} d u\]
\[ \Rightarrow I = \frac{1}{2} \left[ \tan^{- 1} u \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{8}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is