Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int_0^\frac{\pi}{2} \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \right) d x ................(1)\]
\[ = \int_0^\frac{\pi}{2} log\left[ \frac{3 + 5\cos\left( \frac{\pi}{2} - x \right)}{3 + 5\sin\left( \frac{\pi}{2} - x \right)} \right] dx\]
\[ = \int_0^\frac{\pi}{2} log\left( \frac{3 + 5\sin x}{3 + 5\cos x} \right) dx .................(2)\]
\[\text{Adding (1) and (2)}\]
\[2I = \int_0^\frac{\pi}{2} \left[ \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \right) + log\left( \frac{3 + 5\sin x}{3 + 5\cos x} \right) \right] d x\]
\[ = \int_0^\frac{\pi}{2} \log\left( \frac{3 + 5\cos x}{3 + 5\sin x} \times \frac{3 + 5\sin x}{3 + 5\cos x} \right) dx\]
\[ = \int_0^\frac{\pi}{2} \log1 dx = 0\]
\[Hence\ I = 0\]
APPEARS IN
संबंधित प्रश्न
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Prove that:
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
`Γ(3/2)`