Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} d x ................(1)\]
\[ = \int_a^b \frac{f\left( a + b - x \right)}{f\left( a + b - x \right) + f\left( a + b - a - b + x \right)} d x\]
\[ = \int_a^b \frac{f\left( a + b - x \right)}{f\left( a + b - x \right) + f\left( x \right)} d x\]
\[ \therefore I = \int_a^b \frac{f\left( a + b - x \right)}{f\left( x \right) + f\left( a + b - x \right)} d x ...............(2)\]
\[\text{Adding (1) and (2) we get}\]
\[2I = \int_a^b \left[ \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} + \frac{f\left( a + b - x \right)}{f\left( x \right) + f\left( a + b - x \right)} \right] d x\]
\[ = \int_a^b \frac{f\left( x \right) + f\left( a + b - x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx\]
\[ = \left[ x \right]_a^b \]
\[ = b - a\]
\[\text{Hence, }I = \frac{b - a}{2}\]
APPEARS IN
संबंधित प्रश्न
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`Γ (9/2)`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: