Advertisements
Advertisements
प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
उत्तर
\[Let\ I = \int_0^{2a} f\left( x \right) d x\]
\[\text{By Additive property}\]
\[I = \int_0^a f\left( x \right) d x + \int_a^{2a} f\left( x \right) d x\]
\[\text{Consider the integra}l \int_a^{2a} f\left( x \right) d x\]
\[Let\ x = 2a - t, \text{then }dx = - dt\]
\[When\ x = a, t = a, x = 2x, t = 0\]
\[\text{Hence } \int_a^{2a} f\left( x \right) d x = - \int_a^0 f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - x \right) dx ...............\left( \text{Changing the variable} \right)\]
Therefore,
\[I = \int_0^a f\left( x \right) d x + \int_0^a f\left( 2a - x \right) d x\]
\[ = \int_0^a f\left( x \right) d x + \int_0^a f\left( x \right) d x .................\left[\text{Given }\int_0^a f\left( x \right) d x = \int_0^a f\left( 2a - x \right) d x \right]\]
\[ = 2 \int_0^a f\left( x \right) d x\]
Hence Proved.
APPEARS IN
संबंधित प्रश्न
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Γ(n) is
Find `int sqrt(10 - 4x + 4x^2) "d"x`