English

If F is an Integrable Function Such that F(2a − X) = F(X), Then Prove that 2 a ∫ 0 F ( X ) D X = 2 a ∫ 0 F ( X ) D X - Mathematics

Advertisements
Advertisements

Question

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 

Sum

Solution

\[Let\ I = \int_0^{2a} f\left( x \right) d x\]
\[\text{By Additive property}\]
\[I = \int_0^a f\left( x \right) d x + \int_a^{2a} f\left( x \right) d x\]
\[\text{Consider the integra}l \int_a^{2a} f\left( x \right) d x\]
\[Let\ x = 2a - t, \text{then }dx = - dt\]
\[When\ x = a, t = a, x = 2x, t = 0\]
\[\text{Hence } \int_a^{2a} f\left( x \right) d x = - \int_a^0 f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - x \right) dx ...............\left( \text{Changing the variable} \right)\]
Therefore,
\[I = \int_0^a f\left( x \right) d x + \int_0^a f\left( 2a - x \right) d x\]
\[ = \int_0^a f\left( x \right) d x + \int_0^a f\left( x \right) d x .................\left[\text{Given }\int_0^a f\left( x \right) d x = \int_0^a f\left( 2a - x \right) d x \right]\]
\[ = 2 \int_0^a f\left( x \right) d x\]

Hence Proved.

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 96]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 43 | Page 96

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_1^3 \left( 3x - 2 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following:

`int_0^oo "e"^(- x/2) x^5  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

Γ(n) is


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×