Advertisements
Advertisements
Question
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
Solution
\[Let\ I = \int_0^{2a} f\left( x \right) d x\]
\[\text{By Additive property}\]
\[I = \int_0^a f\left( x \right) d x + \int_a^{2a} f\left( x \right) d x\]
\[\text{Consider the integra}l \int_a^{2a} f\left( x \right) d x\]
\[Let\ x = 2a - t, \text{then }dx = - dt\]
\[When\ x = a, t = a, x = 2x, t = 0\]
\[\text{Hence } \int_a^{2a} f\left( x \right) d x = - \int_a^0 f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - t \right) d t\]
\[ = \int_0^a f\left( 2a - x \right) dx ...............\left( \text{Changing the variable} \right)\]
Therefore,
\[I = \int_0^a f\left( x \right) d x + \int_0^a f\left( 2a - x \right) d x\]
\[ = \int_0^a f\left( x \right) d x + \int_0^a f\left( x \right) d x .................\left[\text{Given }\int_0^a f\left( x \right) d x = \int_0^a f\left( 2a - x \right) d x \right]\]
\[ = 2 \int_0^a f\left( x \right) d x\]
Hence Proved.
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate each of the following integral:
Evaluate :
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
Γ(n) is
Find: `int logx/(1 + log x)^2 dx`