Advertisements
Advertisements
Question
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
Options
- \[\frac{\pi}{2}\]
- \[\frac{1}{2}\]
- \[\frac{\pi}{4}\]
1
Solution
\[\int_0^\alpha \frac{1}{1 + 4 x^2} d x = \frac{\pi}{8}\]
\[ \Rightarrow \int_0^\alpha \frac{1}{1 + \left( 2x \right)^2} d x = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \left[ \tan^{- 1} 2x \right]_0^\alpha = \frac{\pi}{8}\]
\[ \Rightarrow \frac{1}{2} \tan^{- 1} 2\alpha = \frac{\pi}{8}\]
\[ \Rightarrow 2\alpha = \tan\frac{\pi}{4}\]
\[ \Rightarrow 2\alpha = 1\]
\[ \therefore \alpha = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
`int x^3/(x + 1)` is equal to ______.