Advertisements
Advertisements
Question
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Options
0
1
2
`1/2`
MCQ
Solution
`1/2`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]
\[\int_{- 2}^2 x e^\left| x \right| dx\]
\[\int\limits_1^3 \left( 3x - 2 \right) dx\]
\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]
\[\int\limits_1^2 \log_e \left[ x \right] dx .\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`