Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \frac{1 - x}{1 + x} d\ x\ . Then, \]
\[I = \int_0^1 \left( \frac{1}{1 + x} - \frac{1 + x - 1}{1 + x} \right) d x\]
\[I = \int_0^1 \left( \frac{1}{1 + x} - 1 + \frac{x}{1 + x} \right) d x\]
\[ \Rightarrow I = \left[ \log \left( 1 + x \right) - x + \log \left( 1 + x \right) \right]_0^1 \]
\[ \Rightarrow I = \left( \log 2 - 1 + \log 2 \right) - \left( \log 1 - 0 + \log 1 \right)\]
\[ = 2 \log 2 - 1\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
Γ(4)
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: