English

Π / 2 ∫ 0 1 5 + 4 Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{5 + 4 \sin x} d x . Then, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{5 + 4\left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{5\left( 1 + \tan^2 \frac{x}{2} \right) + 8 \tan \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 5} dx\]
\[Let\ \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0 and x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = 2 \int_0^1 \frac{1}{5 t^2 + 8t + 5} dt\]
\[ \Rightarrow I = 2 \int_0^1 \frac{1}{\left( \sqrt{5}t \right)^2 + 8t + 5 + \left( \frac{4}{\sqrt{5}} \right)^2 - \left( \frac{4}{\sqrt{5}} \right)^2} dt\]
\[ \Rightarrow I = 2 \int_0^1 \frac{1}{\left( \sqrt{5}t + \frac{4}{\sqrt{5}} \right)^2 + \frac{9}{5}} dt\]
\[ \Rightarrow I = \frac{2}{3} \left[ \tan^{- 1} \left( \frac{\sqrt{5}t + \frac{4}{\sqrt{5}}}{\frac{3}{\sqrt{5}}} \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3}\left[ \tan^{- 1} 3 - \tan^{- 1} \frac{4}{3} \right]\]
\[ \Rightarrow I = \frac{2}{3}\left[ \tan^{- 1} \left( \frac{3 - \frac{4}{3}}{1 + 3 \times \frac{4}{3}} \right) \right]\]
\[ \Rightarrow I = \frac{2}{3} \tan^{- 1} \frac{1}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 20 | Page 39

RELATED QUESTIONS

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 


\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]

\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_0^\pi \cos 2x \log \sin x dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Choose the correct alternative:

Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is


Choose the correct alternative:

`Γ(3/2)`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Find `int sqrt(10 - 4x + 4x^2)  "d"x`


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×