Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{5 + 4 \sin x} d x . Then, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{5 + 4\left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)} d x\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{5\left( 1 + \tan^2 \frac{x}{2} \right) + 8 \tan \frac{x}{2}} dx\]
\[ \Rightarrow I = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{5 \tan^2 \frac{x}{2} + 8 \tan \frac{x}{2} + 5} dx\]
\[Let\ \tan \frac{x}{2} = t . Then, \frac{1}{2} \sec^2 \frac{x}{2} dx = dt\]
\[When\ x = 0, t = 0 and x = \frac{\pi}{2}, t = 1\]
\[ \therefore I = 2 \int_0^1 \frac{1}{5 t^2 + 8t + 5} dt\]
\[ \Rightarrow I = 2 \int_0^1 \frac{1}{\left( \sqrt{5}t \right)^2 + 8t + 5 + \left( \frac{4}{\sqrt{5}} \right)^2 - \left( \frac{4}{\sqrt{5}} \right)^2} dt\]
\[ \Rightarrow I = 2 \int_0^1 \frac{1}{\left( \sqrt{5}t + \frac{4}{\sqrt{5}} \right)^2 + \frac{9}{5}} dt\]
\[ \Rightarrow I = \frac{2}{3} \left[ \tan^{- 1} \left( \frac{\sqrt{5}t + \frac{4}{\sqrt{5}}}{\frac{3}{\sqrt{5}}} \right) \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3}\left[ \tan^{- 1} 3 - \tan^{- 1} \frac{4}{3} \right]\]
\[ \Rightarrow I = \frac{2}{3}\left[ \tan^{- 1} \left( \frac{3 - \frac{4}{3}}{1 + 3 \times \frac{4}{3}} \right) \right]\]
\[ \Rightarrow I = \frac{2}{3} \tan^{- 1} \frac{1}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
Solve each of the following integral:
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x "d"x)/(x^2 + 1)`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.