Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_4^9 \frac{\sqrt{x}}{\left( 30 - x^\frac{3}{2} \right)^2} d x . Then, \]
\[Let \left( 30 - x^\frac{3}{2} \right) = t . Then, - \frac{3}{2}\sqrt{x} dx = dt\]
\[When\, x = 4, t = 22\ and\ x\ = 9, t = 3\]
\[ \therefore I = \int_{22}^3 - \frac{2}{3}\frac{1}{t^2} dt\]
\[ \Rightarrow I = \frac{2}{3} \left[ \frac{1}{t} \right]_{22}^3 \]
\[ \Rightarrow I = \frac{2}{3}\left( \frac{1}{3} - \frac{1}{22} \right)\]
\[ \Rightarrow I = \frac{19}{99}\]
APPEARS IN
RELATED QUESTIONS
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.