English

9 ∫ 4 √ X ( 30 − X 3 / 2 ) 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

Solution

\[Let\ I = \int_4^9 \frac{\sqrt{x}}{\left( 30 - x^\frac{3}{2} \right)^2} d x . Then, \]
\[Let \left( 30 - x^\frac{3}{2} \right) = t . Then, - \frac{3}{2}\sqrt{x} dx = dt\]
\[When\, x = 4, t = 22\ and\ x\ = 9, t = 3\]
\[ \therefore I = \int_{22}^3 - \frac{2}{3}\frac{1}{t^2} dt\]
\[ \Rightarrow I = \frac{2}{3} \left[ \frac{1}{t} \right]_{22}^3 \]
\[ \Rightarrow I = \frac{2}{3}\left( \frac{1}{3} - \frac{1}{22} \right)\]
\[ \Rightarrow I = \frac{19}{99}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 40]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 47 | Page 40

RELATED QUESTIONS

\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^2 \left[ x \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×