English

1 ∫ 0 √ 1 − X 1 + X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

Solution

\[Let\ I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d\ x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} \times \frac{\sqrt{1 - x}}{\sqrt{1 - x}} d x\]
\[ \Rightarrow I = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \int_0^1 \frac{- 2x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \left[ 2\sqrt{1 - x^2} \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{2} - 0 + 0 - 1\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 37 | Page 39

RELATED QUESTIONS

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 


\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following:

`Γ (9/2)`


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×