Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d\ x . Then, \]
\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} \times \frac{\sqrt{1 - x}}{\sqrt{1 - x}} d x\]
\[ \Rightarrow I = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \int_0^1 \frac{1}{\sqrt{1 - x^2}} dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \int_0^1 \frac{- 2x}{\sqrt{1 - x^2}} dx\]
\[ \Rightarrow I = \left[ \sin^{- 1} x \right]_0^1 + \frac{1}{2} \left[ 2\sqrt{1 - x^2} \right]_0^1 \]
\[ \Rightarrow I = \frac{\pi}{2} - 0 + 0 - 1\]
\[ \Rightarrow I = \frac{\pi}{2} - 1\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.