Advertisements
Advertisements
Question
Evaluate the following integral:
Solution
\[\text{Let I} = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]
Consider
\[f\left( - \theta \right) = \log\left( \frac{a - \sin\left( - \theta \right)}{a + \sin\left( - \theta \right)} \right)\]
\[ = \log\left( \frac{a + \sin\theta}{a - \sin\theta} \right) ............\left[ \sin\left( - x \right) = - \sin x \right]\]
\[ = \log \left( \frac{a - \sin\theta}{a + \sin\theta} \right)^{- 1} \]
\[ = - \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) ..............\left[ \log a^b = b\log a \right]\]
\[ = - f\left( \theta \right)\]
\[\therefore f\left( - \theta \right) = - f\left( \theta \right)\]
\[ \Rightarrow I = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta = 0 .................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate each of the following integral:
Solve each of the following integral:
Evaluate :
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^1 \log\left( 1 + x \right) dx\]
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Find: `int logx/(1 + log x)^2 dx`