English

Evaluate the Following Integral: ∫ a − a Log ( a − Sin θ a + Sin θ ) D θ - Mathematics

Advertisements
Advertisements

Question

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]
Sum

Solution

\[\text{Let I} = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

Consider

\[f\left( - \theta \right) = \log\left( \frac{a - \sin\left( - \theta \right)}{a + \sin\left( - \theta \right)} \right)\]
\[ = \log\left( \frac{a + \sin\theta}{a - \sin\theta} \right) ............\left[ \sin\left( - x \right) = - \sin x \right]\]
\[ = \log \left( \frac{a - \sin\theta}{a + \sin\theta} \right)^{- 1} \]
\[ = - \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right) ..............\left[ \log a^b = b\log a \right]\]
\[ = - f\left( \theta \right)\]

\[\therefore f\left( - \theta \right) = - f\left( \theta \right)\]

\[ \Rightarrow I = \int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta = 0 .................\left[ \int_{- a}^a f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( - x \right) = - f\left( x \right)\end{cases} \right]\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.5 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.5 | Q 30 | Page 95

RELATED QUESTIONS

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_0^1 \left| 2x - 1 \right| dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×