English

D∫cos2x-cos2θcosx-cosθdx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.

Options

  • 2(sinx + xcosθ) + C

  • 2(sinx – xcosθ) + C

  • 2(sinx + 2xcosθ) + C

  • 2(sinx – 2x cosθ) + C

MCQ
Fill in the Blanks

Solution

`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to 2(sinx + xcosθ) + C.

Explanation:

Let I = `int (cos2x - cos 2theta)/(cosx - costheta) "d"x`

= `int ((2cos^2x - 1 - 2 cos^2theta + 1))/(cosx - costheta) "d"x`

= `2int ((cosx + cos theta)(cosx - costheta))/((cosx - costheta)) "d"x`

= `2int(cos x + cos theta) "d"x`

= 2(sinx + xcosθ) + C

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 166]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 48 | Page 166

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_2^3 \frac{1}{x}dx\]

Evaluate : 

\[\int\limits_2^3 3^x dx .\]

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to

\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×