Advertisements
Advertisements
Question
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
Options
2(sinx + xcosθ) + C
2(sinx – xcosθ) + C
2(sinx + 2xcosθ) + C
2(sinx – 2x cosθ) + C
Solution
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to 2(sinx + xcosθ) + C.
Explanation:
Let I = `int (cos2x - cos 2theta)/(cosx - costheta) "d"x`
= `int ((2cos^2x - 1 - 2 cos^2theta + 1))/(cosx - costheta) "d"x`
= `2int ((cosx + cos theta)(cosx - costheta))/((cosx - costheta)) "d"x`
= `2int(cos x + cos theta) "d"x`
= 2(sinx + xcosθ) + C
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate :
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.