Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Options
- \[\frac{1}{3} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
- \[\sqrt{3} \tan^{- 1} \left( \sqrt{3} \right)\]
- \[2\sqrt{3} \tan^{- 1} \sqrt{3}\]
Solution
\[\text{We have}, \]
\[I = \int_0^\frac{\pi}{2} \frac{1}{2 + \cos x} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1}{2 + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \tan^2 \frac{x}{2}}{2 + 2 \tan^2 \frac{x}{2} + 1 - \tan^2 \frac{x}{2}}dx\]
\[ = \int_0^\frac{\pi}{2} \frac{\sec^2 \frac{x}{2}}{3 + \tan^2 \frac{x}{2}}dx\]
\[\text{Putting} \tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[When, x \to 0; t \to 0\]
\[and x \to \frac{\pi}{2}; t \to 1\]
\[ \therefore I = \int_0^1 \frac{2}{3 + t^2}dt\]
\[ = 2 \int_0^1 \frac{1}{\left( \sqrt{3} \right)^2 + t^2}dt\]
\[ = \frac{2}{\sqrt{3}} \left[ \tan^{- 1} \frac{t}{\sqrt{3}} \right]_0^1 \]
\[ = \frac{2}{\sqrt{3}}\left[ \tan^{- 1} \frac{1}{\sqrt{3}} - \tan^{- 1} \frac{0}{\sqrt{3}} \right]\]
\[ = \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.