English

Π ∫ 0 √ 1 − X 1 + X D X =π 2,π 2 − 1,π 2 + 1, π + 1 - Mathematics

Advertisements
Advertisements

Question

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`

Options

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{2} - 1\]

  • \[\frac{\pi}{2} + 1\]
  •  π + 1

  • None of these

MCQ

Solution

 None of the given option is correct.

\[\text{We have}, \]

\[I = \int_0^1 \sqrt{\frac{1 - x}{1 + x}} d x\]

`int_0^1 sqrt((1 - "x")/(1 + "x") xx (1 - "x")/(1 - "x"))   "dx"`

\[ = \int_0^1 \frac{1 - x}{\sqrt{1 - x^2}}dx\]

\[ = \int_0^1 \frac{1}{\sqrt{1 - x^2}}dx - \int_0^1 \frac{x}{\sqrt{1 - x^2}}dx\]

`=> int_0^1 1/sqrt(1 - "x"^2)  "dx" - int_0^1 "x"/sqrt(1 - "x"^2)`dx     ......`[int 1/(sqrt ("a"^2 - "x"^2)) "dx" = "sin"^-1 "x"/"a" + "C"]`

`= > ["sin"^-1 "x"/1]_0^1 + int_1^0 1/sqrt"t"  "dt"/2`

`=> [sin^-1 (1) - sin^-1(0)] + 1/2 int_1^0 "t"^(-1/2)`dt

 `=> pi/2 - 0 + 1/2 [2"t"^(1/2)]_0^1`

`=> pi/2 + (1 - "x"^2)^(1/2)int_0^1`

`=> pi/2 + [(1 - 1)^(1/2) - (1 - 0)^(1/2)]`

`=> pi/2 - 1^(1/2)`

`=> (pi/2 - 1)`

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - MCQ [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
MCQ | Q 10 | Page 117

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^2 x\sqrt{2 - x} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^2 \sqrt{4 - x^2} dx\]

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 


If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×