English

2 ∫ 0 ( X 2 + X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^2 \left( x^2 + x \right) dx\]
Sum

Solution

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]

\[\text{Here }a = 0, b = 2, f\left( x \right) = x^2 + x, h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 \left( x^2 + x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 0 \right) + \left( h^2 + h \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 + h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + h\left\{ 1 + 2 + 3 . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} + n - 1 \right]\]
\[ = \lim_{n \to \infty} 2\left[ \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) + 1 - \frac{1}{n} \right]\]
\[ = \frac{8}{3} + 2\]
\[ = \frac{14}{3}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.6 [Page 111]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.6 | Q 24 | Page 111

RELATED QUESTIONS

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]


\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]

\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_a^b x\ dx\]

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Evaluate the following:

`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

The value of `int_(- pi/2)^(pi/2) cos  x  "d"x` is


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


Verify the following:

`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×