Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 2, f\left( x \right) = x^2 + 2x + 1, h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 \left( x^2 + 2x + 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 0 + 1 \right) + \left( h^2 + 2h + 1 \right) + . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 + 2\left( n - 1 \right)h + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \left( 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right) + 2h\left\{ 1 + 2 + . . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} + 2h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ n + \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} + 2n - 2 \right]\]
\[ = \lim_{n \to \infty} 2\left\{ 3 + \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) - \frac{2}{n} \right\}\]
\[ = 6 + \frac{8}{3}\]
\[ = \frac{26}{3}\]
APPEARS IN
RELATED QUESTIONS
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Write the coefficient a, b, c of which the value of the integral
Evaluate :
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Find: `int logx/(1 + log x)^2 dx`
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`