Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_{- \frac{\pi}{4}}^\frac{\pi}{4} \sin^2 x d x\]
\[Here\ f\left( x \right) = \sin^2 x\]
\[f\left( - x \right) = \sin^2 \left( - x \right) = \sin^2 x = f\left( x \right)\]
\[\text{Hence} \sin^2 x \text{is an even function}\]
Therefore,
\[I = 2 \int_0^\frac{\pi}{4} \sin^2 x d x\]
\[ = 2 \int_0^\frac{\pi}{4} \left( \frac{1 - \cos2x}{2} \right)dx\]
\[ = \int_0^\frac{\pi}{4} \left( 1 - \cos2x \right) dx\]
\[ = \left[ x - \frac{\sin2x}{2} \right]_0^\frac{\pi}{4} \]
\[ = \frac{\pi}{4} - \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \left| 2x - 1 \right| dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Choose the correct alternative:
Using the factorial representation of the gamma function, which of the following is the solution for the gamma function Γ(n) when n = 8 is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`int x^3/(x + 1)` is equal to ______.