Advertisements
Advertisements
Question
Solution
\[\int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi\ d \phi\]
\[Let\ \sin \phi = t . Then, \cos \phi\ d\phi = dt\]
\[When\ \phi = 0, t = 0\ and\ \phi = \frac{\pi}{2}, t = 1\]
\[Also, \cos^5 \phi = \cos^4 \phi \cos \phi = \left( 1 - \sin^2 \phi \right)^2 \cos \phi\]
\[ \therefore I = \int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi d \phi\]
\[ \Rightarrow I = \int_0^1 \sqrt{t} \left( 1 - t^2 \right)^2 dt\]
\[ \Rightarrow I = \int_0^1 \sqrt{t}\left( 1 + t^4 - 2 t^2 \right) dt\]
\[ \Rightarrow I = \int_0^1 \left( \sqrt{t} + t^\frac{9}{2} - 2 t^\frac{5}{2} \right) dt\]
\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} + \frac{2 t^\frac{11}{2}}{11} - \frac{4 t^\frac{7}{2}}{7} \right]_0^1 \]
\[ \Rightarrow I = \frac{2}{3} + \frac{2}{11} - \frac{4}{7}\]
\[ \Rightarrow I = \frac{64}{231}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.