English

Π / 2 ∫ 0 √ Sin ϕ Cos 5 ϕ D ϕ - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 

Solution

\[\int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi\ d \phi\]

\[Let\ \sin \phi = t . Then, \cos \phi\ d\phi = dt\]

\[When\ \phi = 0, t = 0\ and\ \phi = \frac{\pi}{2}, t = 1\]

\[Also, \cos^5 \phi = \cos^4 \phi \cos \phi = \left( 1 - \sin^2 \phi \right)^2 \cos \phi\]

\[ \therefore I = \int_0^\frac{\pi}{2} \sqrt{\sin \phi} \cos^5 \phi d \phi\]

\[ \Rightarrow I = \int_0^1 \sqrt{t} \left( 1 - t^2 \right)^2 dt\]

\[ \Rightarrow I = \int_0^1 \sqrt{t}\left( 1 + t^4 - 2 t^2 \right) dt\]

\[ \Rightarrow I = \int_0^1 \left( \sqrt{t} + t^\frac{9}{2} - 2 t^\frac{5}{2} \right) dt\]

\[ \Rightarrow I = \left[ \frac{2 t^\frac{3}{2}}{3} + \frac{2 t^\frac{11}{2}}{11} - \frac{4 t^\frac{7}{2}}{7} \right]_0^1 \]

\[ \Rightarrow I = \frac{2}{3} + \frac{2}{11} - \frac{4}{7}\]

\[ \Rightarrow I = \frac{64}{231}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 11 | Page 39

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^1 x \tan^{- 1} x\ dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]


\[\int\limits_2^3 e^{- x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following using properties of definite integral:

`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x)  "d"x`


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Evaluate the following:

`int ((x^2 + 2))/(x + 1) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×