Advertisements
Advertisements
Question
\[\int\limits_2^3 e^{- x} dx\]
Solution
\[\text{Here }a = 2, b = 3, f\left( x \right) = e^{- x} , h = \frac{3 - 2}{n} = \frac{1}{n}\]
Therefore,
\[ \int_2^3 e^{- x} d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) + . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ f\left( 2 \right) + f\left( 2 + h \right) + . . . . . . . . . . + f\left( 2 + \left( n - 1 \right)h \right) \right]\]
\[ = \lim_{h \to 0} h\left[ e^{- 2} + e^{- \left( 2 + h \right)} + e^{- \left( 2 + 2h \right)} + . . . . . . . + e^{- \left( 2 + \left( n - 1 \right)h \right)} \right]\]
\[ = \lim_{h \to 0} h e^{- 2} \left[ \frac{\left( e^{- h} \right)^n - 1}{e^{- h} - 1} \right]\]
\[ = \lim_{h \to 0} e^{- 2} \left[ \frac{e^{- 1} - 1}{\frac{e^{- h} - 1}{- h}} \right] \times - 1 ....................\left(\text{Since nh = 1 }\right)\]
\[ = \left( e^{- 2} - e^{- 3} \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Evaluate each of the following integral:
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(n) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`