English

2 ∫ 0 1 4 + X − X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]

Solution

\[Let\ I = \int_0^2 \frac{1}{4 + x - x^2}\ d\ x\ . Then, \]
\[I = - \int_0^2 \frac{1}{x^2 - x - 4} d x\]
\[ \Rightarrow I = - \int_0^2 \frac{1}{\left( x^2 - x + \frac{1}{4} \right) - \frac{1}{4} - 4} d\ x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \frac{17}{4}} d x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \int_0^2 \frac{1}{- \left( \frac{2x - 1}{2} \right)^2 + \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \frac{1}{\sqrt{17}} \left[ \log \left( \frac{\sqrt{17} + 2x - 1}{\sqrt{17} - 2x + 1} \right) \right]_0^2 \]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{\sqrt{17} + 3}{\sqrt{17} - 3} - \log \frac{\sqrt{17} - 1}{\sqrt{17} + 1} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{26 + 6\sqrt{17}}{8} - \log \frac{18 - 2\sqrt{17}}{16} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \times \frac{18 + 2\sqrt{17}}{18 + 2\sqrt{17}} \right\}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{1344 + 320\sqrt{17}}{256}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{21 + 5\sqrt{17}}{4}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 39 | Page 17

RELATED QUESTIONS

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]


\[\int\limits_0^\pi x \cos^2 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.


If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]


\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_0^1 x"e"^(x^2)  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_(- pi/2)^(pi/2) sin^2theta  "d"theta`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×