Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^2 \frac{1}{4 + x - x^2}\ d\ x\ . Then, \]
\[I = - \int_0^2 \frac{1}{x^2 - x - 4} d x\]
\[ \Rightarrow I = - \int_0^2 \frac{1}{\left( x^2 - x + \frac{1}{4} \right) - \frac{1}{4} - 4} d\ x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \frac{17}{4}} d x\]
\[ = - \int_0^2 \frac{1}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \int_0^2 \frac{1}{- \left( \frac{2x - 1}{2} \right)^2 + \left( \frac{\sqrt{17}}{2} \right)^2} d\ x\]
\[ = \frac{1}{\sqrt{17}} \left[ \log \left( \frac{\sqrt{17} + 2x - 1}{\sqrt{17} - 2x + 1} \right) \right]_0^2 \]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{\sqrt{17} + 3}{\sqrt{17} - 3} - \log \frac{\sqrt{17} - 1}{\sqrt{17} + 1} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{26 + 6\sqrt{17}}{8} - \log \frac{18 - 2\sqrt{17}}{16} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \right\}\]
\[ = \frac{1}{\sqrt{17}}\left\{ \log \frac{52 + 12\sqrt{17}}{18 - 2\sqrt{17}} \times \frac{18 + 2\sqrt{17}}{18 + 2\sqrt{17}} \right\}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{1344 + 320\sqrt{17}}{256}\]
\[ \Rightarrow I = \frac{1}{\sqrt{17}} \log \frac{21 + 5\sqrt{17}}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]
Evaluate each of the following integral:
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`