English

Π / 2 ∫ 0 1 a 2 Sin 2 X + B 2 Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]

Solution

\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} d\ x . Then, \]
\[\text{Dividing the numerator and denominator by} \cos^2 x, we\ get\]
\[I = \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 \tan^2 x + b^2} d x\]
\[Let\ \tan x = t . Then, \sec^2 x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{2} , t = \infty \]
\[ \therefore I = \int_0^\infty \frac{1}{a^2 t^2 + b^2} d t\]
\[ \Rightarrow I = \frac{1}{a^2} \int_0^\infty \frac{1}{t^2 + \frac{b^2}{a^2}} dt\]
\[ \Rightarrow I = \frac{1}{a^2} \times \frac{a}{b} \left[ \tan^{- 1} \frac{at}{b} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{ab}\frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{2ab}\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.2 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.2 | Q 28 | Page 39

RELATED QUESTIONS

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_{- 1}^1 x\left| x \right| dx .\]

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 


If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]


\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

`int_0^2 "f"(x)  "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`


Evaluate the following:

f(x) = `{{:("c"x",", 0 < x < 1),(0",",  "otherwise"):}` Find 'c" if `int_0^1 "f"(x)  "d"x` = 2


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×