Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} d\ x . Then, \]
\[\text{Dividing the numerator and denominator by} \cos^2 x, we\ get\]
\[I = \int_0^\frac{\pi}{2} \frac{\sec^2 x}{a^2 \tan^2 x + b^2} d x\]
\[Let\ \tan x = t . Then, \sec^2 x\ dx\ = dt\]
\[When\ x = 0, t = 0\ and\ x\ = \frac{\pi}{2} , t = \infty \]
\[ \therefore I = \int_0^\infty \frac{1}{a^2 t^2 + b^2} d t\]
\[ \Rightarrow I = \frac{1}{a^2} \int_0^\infty \frac{1}{t^2 + \frac{b^2}{a^2}} dt\]
\[ \Rightarrow I = \frac{1}{a^2} \times \frac{a}{b} \left[ \tan^{- 1} \frac{at}{b} \right]_0^\infty \]
\[ \Rightarrow I = \frac{1}{ab}\frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{2ab}\]
APPEARS IN
RELATED QUESTIONS
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`