Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 2, f\left( x \right) = x^2 + 2, h = \frac{2 - 0}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_0^2 \left( x^2 + 2 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 2 \right) + \left( h^2 + 2 \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)^2 h^2 + 2 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h^2 \frac{n\left( n - 1 \right)\left( 2n - 1 \right)}{6} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ 2n + \frac{2\left( n - 1 \right)\left( 2n - 1 \right)}{3n} \right]\]
\[ = \lim_{n \to \infty} 2\left\{ 2 + \frac{2}{3}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) \right\}\]
\[ = 4 + \frac{8}{3}\]
\[ = \frac{20}{3}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate the following integral:
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`