∫02af(x)dx is equal to
0
∫0af(x)dx+∫0af(2a−x)dx
According to the additivity property of integralsAccording to the additivity property of integrals, ∫abf(x)dx=∫acf(x)dx+∫cbf(x)dx,where a<c<busing this property∫02af(x)dx=∫0af(x)dx+∫02af(x)dx......(1)Now, consider the integralNow, consider the integral,∫02af(x)dxLet Let x=2a−t.Then,dx=d(2a−t)⇒dx=−dtAlso, Also, x=a⇒t=a and x =2a⇒t=0Therefore, Therefore, ∫a2af(x)dx=−∫a0f(2a−t)dt⇒∫a2af(x)dx=∫0af(2a−t)dt⇒∫a2af(x)dx=∫0af(2a−x)dxSubstituting this in equation (1) we getSubstituting this in equation (1) we get,∫02af(x)dx=∫0af(x)dx+∫0af(2a−x)dx
The value of ∫0π/2log(4+3sinx4+3cosx)dx is
Evaluate : ∫0πx1+sinαsinxdx .
Evaluate: ∫−π/2π/2cosx1+exdx .
∫011−x1+xdx
∫0π/3cosx3+4sinxdx
Find : ∫ablogxx dx
Evaluate the following:
∫14 f(x) dx where f(x) = ,,{4x+3,1≤x≤23x+5,2<x≤4
Choose the correct alternative:
ed∫0∞e-2x dx is
If n > 0, then Γ(n) is
Γ(32)
If eeeed∫3ex-5e-x4e6x+5e-xdx = ax + b log |4ex + 5e –x| + C, then ______.