Advertisements
Advertisements
Question
Solution
\[I = \int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[ = \int_0^{2\pi} \sqrt{\cos^2 \frac{x}{4} + \sin^2 \frac{x}{4} + 2\sin\frac{x}{4}\cos\frac{x}{4}}dx\]
\[ = \int_0^{2\pi} \sqrt{\left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)^2}dx\]
\[ = \int_0^{2\pi} \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right|dx\]
When
\[\therefore \sin\frac{x}{4} \geq 0, \cos\frac{x}{4} \geq 0\]
\[ \Rightarrow \cos\frac{x}{4} + \sin\frac{x}{4} \geq 0\]
\[ \Rightarrow \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right| = \cos\frac{x}{4} + \sin\frac{x}{4}\]
\[\therefore I = \int_0^{2\pi} \left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)dx\]
\[=\left.\frac{\sin\frac{x}{4}}{\frac{1}{4}}\right|_0^{2\pi} + \left.\frac{\left( - \cos\frac{x}{4} \right)}{\frac{1}{4}}\right|_0^{2\pi} \]
\[ = 4\left( \sin\frac{\pi}{2} - \sin0 \right) - 4\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ = 4\left( 1 - 0 \right) - 4\left( 0 - 1 \right)\]
\[ = 4 + 4\]
\[ = 8\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 x^2 "d"x`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.