English

∫ 2 π 0 √ 1 + Sin X 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
Sum

Solution

\[I = \int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
\[ = \int_0^{2\pi} \sqrt{\cos^2 \frac{x}{4} + \sin^2 \frac{x}{4} + 2\sin\frac{x}{4}\cos\frac{x}{4}}dx\]
\[ = \int_0^{2\pi} \sqrt{\left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)^2}dx\]
\[ = \int_0^{2\pi} \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right|dx\]

When

\[0 \leq x \leq 2\pi\]
\[0 \leq \frac{x}{4} \leq \frac{\pi}{2}\]

\[\therefore \sin\frac{x}{4} \geq 0, \cos\frac{x}{4} \geq 0\]
\[ \Rightarrow \cos\frac{x}{4} + \sin\frac{x}{4} \geq 0\]
\[ \Rightarrow \left| \cos\frac{x}{4} + \sin\frac{x}{4} \right| = \cos\frac{x}{4} + \sin\frac{x}{4}\]

\[\therefore I = \int_0^{2\pi} \left( \cos\frac{x}{4} + \sin\frac{x}{4} \right)dx\]
\[=\left.\frac{\sin\frac{x}{4}}{\frac{1}{4}}\right|_0^{2\pi} + \left.\frac{\left( - \cos\frac{x}{4} \right)}{\frac{1}{4}}\right|_0^{2\pi} \]
\[ = 4\left( \sin\frac{\pi}{2} - \sin0 \right) - 4\left( \cos\frac{\pi}{2} - \cos0 \right)\]
\[ = 4\left( 1 - 0 \right) - 4\left( 0 - 1 \right)\]
\[ = 4 + 4\]
\[ = 8\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 63 | Page 18

RELATED QUESTIONS

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]

\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]

\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]


\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_0^(pi/2) sqrt(1 + cos x)  "d"x`


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×