Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} d x . Then, \]
\[I = \int_0^2 \frac{1}{\sqrt{- x^2 + 2x - 1 + 1 + 3}} d x\]
\[ \Rightarrow I = \int_0^2 \frac{1}{\sqrt{- \left( x - 1 \right)^2 + 4}} d x\]
\[ \Rightarrow I = \left[ \sin^{- 1} \frac{\left( x - 1 \right)}{2} \right]_0^2 \]
\[ \Rightarrow I = \sin^{- 1} \frac{1}{2} - \sin^{- 1} \left( - \frac{1}{2} \right)\]
\[ \Rightarrow I = 2 \sin^{- 1} \frac{1}{2}\]
\[ \Rightarrow I = 2 \times \frac{\pi}{6} = \frac{\pi}{3}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`