Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/4} e^x \sin x dx\]
Solution
\[Let, I = \int_0^\frac{\pi}{4} e^x \sin x d x ..............(1)\]
\[ = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \int_0^\frac{\pi}{4} e^x \cos x dx\]
\[ = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} e^x \sin x dx\]
\[ \Rightarrow I = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} - I ..............\left[\text{Using (1)} \right] \]
\[ \Rightarrow 2I = \left[ - e^x \cos x \right]_0^\frac{\pi}{4} + \left[ e^x \sin x \right]_0^\frac{\pi}{4} \]
\[ = - \frac{1}{\sqrt{2}} e^\frac{\pi}{4} + 1 + \frac{1}{\sqrt{2}} e^\frac{\pi}{4} - 0\]
\[ = 1\]
\[\text{Hence }I = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_0^1 \tan^{- 1} x dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
Evaluate the following:
`int_0^oo "e"^(-4x) x^4 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is