English

Π / 2 ∫ 0 ( 2 Log Cos X − Log Sin 2 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 

Sum

Solution

\[Let I = \int_0^\frac{\pi}{2} \left( 2 \log \cos x - \log\sin2x \right) d x\]
\[ = \int_0^\frac{\pi}{2} \left[ 2 \log \cos x - \log\left( 2\sin x \cos x \right) \right] d x\]
\[ = \int_0^\frac{\pi}{2} \left( 2\log\cos x - \log2 - \log\sin x - \log\cos x \right)dx\]
\[ = \int_0^\frac{\pi}{2} \left( \log\cos x - \log2 - \log\sin x \right)dx\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\sin x dx\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\sin\left( \frac{\pi}{2} - x \right) dx ..........................\left[\text{Using }\int_0^a f\left( x \right) dx = \int_0^a f\left( a - x \right) dx \right]\]
\[ = \int_0^\frac{\pi}{2} \log\cos x dx - \int_0^\frac{\pi}{2} \log2 dx - \int_0^\frac{\pi}{2} \log\cos x dx\]
\[ = - \log2 \left[ x \right]_0^\frac{\pi}{2} \]
\[ = - \frac{\pi}{2} \log2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.4 [Page 61]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.4 | Q 11 | Page 61

RELATED QUESTIONS

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 


\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]


If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 


\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_a^b \cos\ x\ dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


\[\int\limits_0^4 x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Evaluate the following:

Γ(4)


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

`Γ(3/2)`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×