Advertisements
Advertisements
Question
Solution
\[Let I = \int_0^\frac{\pi}{2} \cos^2 x\ d\ x\ . Then, \]
\[I = \int_0^\frac{\pi}{2} \cos^2 x\ d\ x\]
\[ \Rightarrow I = \frac{1}{2} \int_0^\frac{\pi}{2} \left( 1 + \cos 2x \right) dx \left[ \because \cos 2x = 2 \cos^2 x - 1 \right]\]
\[ \Rightarrow I = \left[ \frac{x}{2} + \frac{\sin 2x}{4} \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi}{4} + 0 - 0\]
\[ \Rightarrow I = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Prove that:
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
Find : `∫_a^b logx/x` dx
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is