Advertisements
Advertisements
Question
Prove that:
Solution
\[\int_0^\pi xf\left( \sin x \right)dx = \int_0^\pi \left( \pi - x \right)f\left[ \sin\left( \pi - x \right) \right]dx .................\left[ \int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx \right]\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \int_0^\pi \left( \pi - x \right)f\left( \sin x \right)dx\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \pi \int_0^\pi f\left( \sin x \right)dx - \int_0^\pi xf\left( \sin x \right)dx\]
\[ \Rightarrow 2 \int_0^\pi xf\left( \sin x \right)dx = \pi \int_0^\pi f\left( \sin x \right)dx\]
\[ \Rightarrow \int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_0^(i/2) (sin^7x)/(sin^7x + cos^7x) "d"x`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
Choose the correct alternative:
`Γ(3/2)`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.