Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\pi \frac{1}{1 + \sin x} d\ x\ . Then, \]
\[ I = \int_0^\pi \frac{1 - \sin x}{\left( 1 + \sin x \right)\left( 1 - \sin x \right)} d x\]
\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{1 - \sin^2 x} dx \]
\[ \Rightarrow I = \int_0^\pi \frac{1 - \sin x}{\cos^2 x} dx \left[ \because \sin^2 x + \cos^2 x = 1 \right]\]
\[ \Rightarrow I = \int_0^\pi \sec^2 x - \sec x \tan x dx\]
\[ \Rightarrow I = \left[ \tan x - \sec x \right]_0^\pi \]
\[ \Rightarrow I = \left( \tan \pi - \sec \pi \right) - \left( \tan 0 - \sec 0 \right)\]
\[ \Rightarrow I = 0 + 1 - \left( 0 - 1 \right)\]
\[ \Rightarrow I = 1 + 1\]
\[ \Rightarrow I = 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following definite integrals:
Solve each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`