Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Solution
\[\int_0^\frac{\pi}{2} x^2 \cos2x d x\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \frac{\sin2x}{2}dx\]
\[ = \left[ x^2 \frac{sin2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} x \sin 2x dx\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} - \left[ - x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} + \left[ - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx \right]\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} \frac{\cos2x}{2}dx\]
\[ = \left[ x^2 \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} + \left[ x\frac{\cos2x}{2} \right]_0^\frac{\pi}{2} - \frac{1}{2} \left[ \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} \]
\[ = 0 - \frac{\pi}{4} - 0\]
\[ = \frac{- \pi}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f(x) is a continuous function defined on [−a, a], then prove that
If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Choose the correct alternative:
Γ(1) is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`