Advertisements
Advertisements
Question
\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]
Solution
\[\int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x\frac{1}{\sqrt{2}} - \cos x\frac{1}{\sqrt{2}} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x \cos\frac{\pi}{4} - \cos x \sin\frac{\pi}{4} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin\left( x - \frac{\pi}{4} \right) \right| d x\]
\[We have, \]
\[\left| \sin\left( x - \frac{\pi}{4} \right) \right| = \begin{cases} - \sin\left( x - \frac{\pi}{4} \right),& 0 \leq x \leq \frac{\pi}{4}\\ \sin\left( x - \frac{\pi}{4} \right),& \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\end{cases}\]
\[ \therefore \int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x = \sqrt{2} \int_0^\frac{\pi}{4} - \sin\left( x - \frac{\pi}{4} \right) d x + \sqrt{2} \int_\frac{\pi}{4}^\frac{\pi}{2} \sin\left( x - \frac{\pi}{4} \right) d x\]
\[ = \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_0^\frac{\pi}{4} - \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ = \sqrt{2}\left[ \cos \left( 0 \right) - \cos\left( - \frac{\pi}{4} \right) \right] - \sqrt{2}\left[ \cos\left( \frac{\pi}{4} \right) - \cos \left( 0 \right) \right]\]
\[ = \sqrt{2}\left( 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1 \right)\]
\[ = \sqrt{2}\left( 2 - \frac{2}{\sqrt{2}} \right)\]
\[ = 2\sqrt{2} - 2\]
\[ = 2\left( \sqrt{2} - 1 \right)\]
APPEARS IN
RELATED QUESTIONS
If f(x) is a continuous function defined on [−a, a], then prove that
Evaluate each of the following integral:
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7) "d"x`
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Find: `int logx/(1 + log x)^2 dx`