English

Π / 2 ∫ 0 | Sin X − Cos X | D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]

Sum

Solution

\[\int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x\frac{1}{\sqrt{2}} - \cos x\frac{1}{\sqrt{2}} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin x \cos\frac{\pi}{4} - \cos x \sin\frac{\pi}{4} \right| d x\]
\[ = \sqrt{2} \int_0^\frac{\pi}{2} \left| \sin\left( x - \frac{\pi}{4} \right) \right| d x\]
\[We have, \]
\[\left| \sin\left( x - \frac{\pi}{4} \right) \right| = \begin{cases} - \sin\left( x - \frac{\pi}{4} \right),& 0 \leq x \leq \frac{\pi}{4}\\ \sin\left( x - \frac{\pi}{4} \right),& \frac{\pi}{4} \leq x \leq \frac{\pi}{2}\end{cases}\]
\[ \therefore \int_0^\frac{\pi}{2} \left| \sin x - \cos x \right| d x = \sqrt{2} \int_0^\frac{\pi}{4} - \sin\left( x - \frac{\pi}{4} \right) d x + \sqrt{2} \int_\frac{\pi}{4}^\frac{\pi}{2} \sin\left( x - \frac{\pi}{4} \right) d x\]
\[ = \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_0^\frac{\pi}{4} - \sqrt{2} \left[ \cos\left( x - \frac{\pi}{4} \right) \right]_\frac{\pi}{4}^\frac{\pi}{2} \]
\[ = \sqrt{2}\left[ \cos \left( 0 \right) - \cos\left( - \frac{\pi}{4} \right) \right] - \sqrt{2}\left[ \cos\left( \frac{\pi}{4} \right) - \cos \left( 0 \right) \right]\]
\[ = \sqrt{2}\left( 1 - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 1 \right)\]
\[ = \sqrt{2}\left( 2 - \frac{2}{\sqrt{2}} \right)\]
\[ = 2\sqrt{2} - 2\]
\[ = 2\left( \sqrt{2} - 1 \right)\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Revision Exercise [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Revision Exercise | Q 31 | Page 122

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]

\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

\[\int\limits_1^2 \log_e \left[ x \right] dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]

\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_2^3 e^{- x} dx\]


Find : `∫_a^b logx/x` dx


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_(-1)^1 (2x + 3)/(x^2 + 3x + 7)  "d"x`


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×