Advertisements
Advertisements
Question
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Sum
Solution
= `int_0^(1/4) sqrt((1 - 4)^(1/2)) "d"x`
= `[(1 - 4x)^(3/2)/((3/2)(-4))]_0^(1/4)`
= `[(1 - 4x)^(3/2)/(-6)]_0^(1/4)`
= `- 1/6 [(1 - 4x)^(3/2)]_0^(1/4)`
= `- 1/6 [(1 - 4(1/4))^(3/2) - [1 - 4(0)]^(3/2)]`
= `- 1/6 [0 - (1)^(3/2)]`
= `- 1/6 (- 1)`
= `1/6`
shaalaa.com
Definite Integrals
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]
\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]
\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]
\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following:
f(x) = `{{:("c"x",", 0 < x < 1),(0",", "otherwise"):}` Find 'c" if `int_0^1 "f"(x) "d"x` = 2
Choose the correct alternative:
Γ(1) is