English

Π / 4 ∫ 0 X 2 Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

Solution

\[Let\ I = \int_0^\frac{\pi}{4} x^2 \sin\ x\ d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} - 2x \cos\ x\ d\ x\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} + \left[ 2x \sin x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2 \sin\ x\ dx\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} + \left[ 2x \sin x \right]_0^\frac{\pi}{4} + \left[ 2 \cos x \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{- \pi^2}{16\sqrt{2}} + \frac{\pi}{2\sqrt{2}} + \frac{2}{\sqrt{2}} - 2\]
\[ \Rightarrow I = \sqrt{2} + \frac{\pi}{2\sqrt{2}} - \frac{\pi^2}{16\sqrt{2}} - 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 29 | Page 17

RELATED QUESTIONS

\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 


Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]

\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


Evaluate the following using properties of definite integral:

`int_(-1)^1 log ((2 - x)/(2 + x))  "d"x`


If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`


Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×