Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{4} x^2 \sin\ x\ d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} - 2x \cos\ x\ d\ x\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} + \left[ 2x \sin x \right]_0^\frac{\pi}{4} - \int_0^\frac{\pi}{4} 2 \sin\ x\ dx\]
\[ \Rightarrow I = \left[ - x^2 \cos x \right]_0^\frac{\pi}{4} + \left[ 2x \sin x \right]_0^\frac{\pi}{4} + \left[ 2 \cos x \right]_0^\frac{\pi}{4} \]
\[ \Rightarrow I = \frac{- \pi^2}{16\sqrt{2}} + \frac{\pi}{2\sqrt{2}} + \frac{2}{\sqrt{2}} - 2\]
\[ \Rightarrow I = \sqrt{2} + \frac{\pi}{2\sqrt{2}} - \frac{\pi^2}{16\sqrt{2}} - 2\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^{2\pi} \cos^7 x dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
Evaluate the following using properties of definite integral:
`int_(-1)^1 log ((2 - x)/(2 + x)) "d"x`
If f(x) = `{{:(x^2"e"^(-2x)",", x ≥ 0),(0",", "otherwise"):}`, then evaluate `int_0^oo "f"(x) "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1