English

Π / 2 ∫ 0 X 2 Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]

Solution

\[Let\ I = \int_0^\frac{\pi}{2} x^2 \cos x d x . Then, \]
\[\text{Integrating by parts}\]
\[I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \int_0^\frac{\pi}{2} 2x \sin x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} - \left[ - 2x \cos x \right]_0^\frac{\pi}{2} + \int_0^\frac{\pi}{2} - 2 \cos x d x\]
\[ \Rightarrow I = \left[ x^2 \sin x \right]_0^\frac{\pi}{2} + \left[ 2x \cos x \right]_0^\frac{\pi}{2} - \left[ 2 \sin x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = \frac{\pi^2}{4} - 2\]

shaalaa.com
Definite Integrals
  Is there an error in this question or solution?
Chapter 20: Definite Integrals - Exercise 20.1 [Page 17]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 20 Definite Integrals
Exercise 20.1 | Q 28 | Page 17

RELATED QUESTIONS

\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]

\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]

\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^4 \left( x^2 - x \right) dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^2 \left( x^2 + x \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is


\[\int\limits_0^1 \cos^{- 1} x dx\]


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]


Prove that `int_a^b ƒ ("x") d"x" = int_a^bƒ(a + b - "x") d"x" and "hence evaluate" int_(π/6)^(π/3) (d"x")/(1+sqrt(tan "x")`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x "d"x)/(x^2 + 1)`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×