Advertisements
Advertisements
Question
Solution
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left\{ a + \left( n - 1 \right)h \right\} \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = 0, b = 5, f\left( x \right) = x + 1, h = \frac{5 - 0}{n} = \frac{5}{n}\]
Therefore,
\[I = \int_0^5 \left( x + 1 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 1 \right) + \left( h + 1 \right) + . . . . . . . . . . . . . . . + \left\{ \left( n - 1 \right)h + 1 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h\left\{ 1 + 2 + 3 + . . . . . . . . . . . . . . . . . + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{5}{n}\left[ n + \frac{5\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} 5\left[ 1 + \frac{5}{2}\left( 1 - \frac{1}{n} \right) \right]\]
\[ = 5 + \frac{25}{2}\]
\[ = \frac{35}{2}\]
APPEARS IN
RELATED QUESTIONS
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Write the coefficient a, b, c of which the value of the integral
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
Evaluate the following integrals :-
\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]
Evaluate the following:
`int_0^2 "f"(x) "d"x` where f(x) = `{{:(3 - 2x - x^2",", x ≤ 1),(x^2 + 2x - 3",", 1 < x ≤ 2):}`
Choose the correct alternative:
The value of `int_(- pi/2)^(pi/2) cos x "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.