Advertisements
Advertisements
Question
Options
π/3
π/6
π/12
π/2
Solution
\[\frac{\pi}{12}\]
\[Let\, I = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cotx}} d x .............(1)\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{cot\left( \frac{\pi}{3} + \frac{\pi}{6} - x \right)}} dx ..............\left[\text{Using }\int_a^b f\left( x \right) d x = \int_a^b f\left( a + b - x \right) d x \right]\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \sqrt{\tan x}} d x .................(2)\]
Adding (1) and (2) we get
\[2I = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{1}{1 + \sqrt{cotx}} + \frac{1}{1 + \sqrt{\tan x}} \right] d x \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{\left( 1 + \sqrt{cotx} \right)\left( 1 + \sqrt{\tan x} \right)}dx\]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} \left[ \frac{2 + \sqrt{cotx} + \sqrt{\tan x}}{2 + \sqrt{cotx} + \sqrt{\tan x}} \right]dx \]
\[ = \int_\frac{\pi}{6}^\frac{\pi}{3} dx\]
\[ = \left[ x \right]_\frac{\pi}{6}^\frac{\pi}{3} \]
\[ = \frac{\pi}{3} - \frac{\pi}{6}\]
\[ = \frac{\pi}{6}\]
\[\text{Hence, }I = \frac{\pi}{12}\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]
If f is an integrable function, show that
\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Choose the correct alternative:
If n > 0, then Γ(n) is
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.