Advertisements
Advertisements
Question
Solution
\[\int_0^2 2x\left[ x \right]dx\]
\[ = \int_0^1 2x\left[ x \right]dx + \int_1^2 2x\left[ x \right]dx\]
\[ = \int_0^1 2x \times 0dx + \int_1^2 2x \times 1dx .................\left[ \left[ x \right] = \begin{cases}0, & 0 \leq x < 1 \\ 1, & 1 \leq x < 2\end{cases} \right]\]
\[ = 0 + 2 \int_1^2 xdx\]
\[ = \left.2 \times \frac{x^2}{2}\right|_1^2 \]
\[ = 4 - 1\]
\[ = 3\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f is an integrable function, show that
Evaluate :
The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .
If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\] then the value of I10 + 90I8 is
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`