हिंदी

∫ 2 0 2 X [ X ] D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int_0^2 2x\left[ x \right]dx\]
योग

उत्तर

\[\int_0^2 2x\left[ x \right]dx\]
\[ = \int_0^1 2x\left[ x \right]dx + \int_1^2 2x\left[ x \right]dx\]
\[ = \int_0^1 2x \times 0dx + \int_1^2 2x \times 1dx .................\left[ \left[ x \right] = \begin{cases}0, & 0 \leq x < 1 \\ 1, & 1 \leq x < 2\end{cases} \right]\]
\[ = 0 + 2 \int_1^2 xdx\]
\[ = \left.2 \times \frac{x^2}{2}\right|_1^2 \]
\[ = 4 - 1\]
\[ = 3\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.3 | Q 27 | पृष्ठ ५६

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]

\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 


\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\int\limits_0^1 \tan^{- 1} x dx\]


\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_0^1 \log\left( 1 + x \right) dx\]


\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_1^4 \left( x^2 + x \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x


`int "e"^x ((1 - x)/(1 + x^2))^2  "d"x` is equal to ______.


`int x^9/(4x^2 + 1)^6  "d"x` is equal to ______.


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×