Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^1 \frac{1 - x}{1 + x} d\ x\ . Then, \]
\[I = \int_0^1 \left( \frac{1}{1 + x} - \frac{1 + x - 1}{1 + x} \right) d x\]
\[I = \int_0^1 \left( \frac{1}{1 + x} - 1 + \frac{x}{1 + x} \right) d x\]
\[ \Rightarrow I = \left[ \log \left( 1 + x \right) - x + \log \left( 1 + x \right) \right]_0^1 \]
\[ \Rightarrow I = \left( \log 2 - 1 + \log 2 \right) - \left( \log 1 - 0 + \log 1 \right)\]
\[ = 2 \log 2 - 1\]
APPEARS IN
संबंधित प्रश्न
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f is an integrable function, show that
If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^\pi \cos 2x \log \sin x dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Evaluate the following:
`Γ (9/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x