हिंदी

Π ∫ 0 Sin 3 X ( 1 + 2 Cos X ) ( 1 + Cos X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

योग

उत्तर

We have,

\[I = \int_0^\pi \sin^3 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 d x\]

\[ = \int_0^\pi \sin^2 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]

\[ = \int_0^\pi \left( 1 - \cos^2 x \right)\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]

\[\text{Putting }\cos x = t\]

\[ \Rightarrow - \sin x dx = dt\]

\[\text{When }x \to 0; t \to 1\]

\[\text{and }x \to \pi; t \to - 1\]

\[ \therefore I = - \int_1^{- 1} \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]

\[ = \int_{- 1}^1 \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]

\[ = \int_{- 1}^1 \left( 1 + 2t - t^2 - 2 t^3 \right)\left( 1 + 2t + t^2 \right)dt\]

\[ = \int_{- 1}^1 \left( 1 + 2t + t^2 + 2t + 4 t^2 + 2 t^3 - t^2 - 2 t^3 - t^4 - 2 t^3 - 4 t^4 - 2 t^5 \right)dt\]

\[ = \int_{- 1}^1 \left( 1 + 4t + 4 t^2 - 2 t^3 - 5 t^4 - 2 t^5 \right)dt\]

\[ = \left[ t + 2 t^2 + \frac{4 t^3}{3} - \frac{t^4}{2} - t^5 - \frac{t^6}{3} \right]_{- 1}^1 \]

\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} - \left( - 1 \right) - 2 \left( - 1 \right)^2 - \frac{4 \left( - 1 \right)^3}{3} + \frac{\left( - 1 \right)^4}{2} + \left( - 1 \right)^5 + \frac{\left( - 1 \right)^6}{3}\]

\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} + 1 - 2 + \frac{4}{3} + \frac{1}{2} - 1 + \frac{1}{3}\]

\[ = \frac{8}{3}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 14 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_1^e \frac{\log x}{x} dx\]

\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]

\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]

\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 

Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .


Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .


\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


\[\int\limits_0^4 x dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following using properties of definite integral:

`int_(- pi/4)^(pi/4) x^3 cos^3 x  "d"x`


Evaluate the following using properties of definite integral:

`int_0^1 x/((1 - x)^(3/4))  "d"x`


Choose the correct alternative:

Γ(n) is


Choose the correct alternative:

Γ(1) is


If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.


The value of `int_2^3 x/(x^2 + 1)`dx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×