Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
उत्तर
We have,
\[I = \int_0^\pi \sin^3 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 d x\]
\[ = \int_0^\pi \sin^2 x\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]
\[ = \int_0^\pi \left( 1 - \cos^2 x \right)\left( 1 + 2\cos x \right) \left( 1 + \cos x \right)^2 \sin x d x\]
\[\text{Putting }\cos x = t\]
\[ \Rightarrow - \sin x dx = dt\]
\[\text{When }x \to 0; t \to 1\]
\[\text{and }x \to \pi; t \to - 1\]
\[ \therefore I = - \int_1^{- 1} \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]
\[ = \int_{- 1}^1 \left( 1 - t^2 \right)\left( 1 + 2t \right) \left( 1 + t \right)^2 dt\]
\[ = \int_{- 1}^1 \left( 1 + 2t - t^2 - 2 t^3 \right)\left( 1 + 2t + t^2 \right)dt\]
\[ = \int_{- 1}^1 \left( 1 + 2t + t^2 + 2t + 4 t^2 + 2 t^3 - t^2 - 2 t^3 - t^4 - 2 t^3 - 4 t^4 - 2 t^5 \right)dt\]
\[ = \int_{- 1}^1 \left( 1 + 4t + 4 t^2 - 2 t^3 - 5 t^4 - 2 t^5 \right)dt\]
\[ = \left[ t + 2 t^2 + \frac{4 t^3}{3} - \frac{t^4}{2} - t^5 - \frac{t^6}{3} \right]_{- 1}^1 \]
\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} - \left( - 1 \right) - 2 \left( - 1 \right)^2 - \frac{4 \left( - 1 \right)^3}{3} + \frac{\left( - 1 \right)^4}{2} + \left( - 1 \right)^5 + \frac{\left( - 1 \right)^6}{3}\]
\[ = 1 + 2 + \frac{4}{3} - \frac{1}{2} - 1 - \frac{1}{3} + 1 - 2 + \frac{4}{3} + \frac{1}{2} - 1 + \frac{1}{3}\]
\[ = \frac{8}{3}\]
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals
Evaluate : \[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\] .
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_0^4 x dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/4)^(pi/4) x^3 cos^3 x "d"x`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Choose the correct alternative:
Γ(n) is
Choose the correct alternative:
Γ(1) is
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
The value of `int_2^3 x/(x^2 + 1)`dx is ______.