हिंदी

A ∫ − a √ a − X a + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

उत्तर

\[Let\, I = \int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]

\[Consider\, x = a \cos 2y\ Then\ y = \frac{1}{2} \cos^{- 1} \left( \frac{x}{a} \right)\]

\[ \Rightarrow dx = - 2a \sin 2y\ dy\]

\[When\, x \to - a ; y \to \frac{\pi}{2}\ and\ x\ \to a ; y \to 0\]

\[\text{Now, integral becomes}, \]

\[ I = \int_\frac{\pi}{2}^0 - 2a \sin 2y\sqrt{\frac{a - a \cos 2y}{a + a \cos 2y}} dy\]

\[ = \int_0^\frac{\pi}{2} 2a \sin 2y \tan\ y\ dy\]

\[ = 2a \int_0^\frac{\pi}{2} 2\sin y \cos y \frac{\sin y}{\cos y}\ dy\]

\[ = 2a \int_0^\frac{\pi}{2} 2 \sin^2\ y\ dy\]

\[ = 2a \int_0^\frac{\pi}{2} \left( 1 - \cos 2y \right) dy\]

\[ = 2a \left[ y - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]

\[ = 2a \left[ \frac{\pi}{2} - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]

\[ = \pi a\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 55 | पृष्ठ ४०

संबंधित प्रश्न

\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]

\[\int_{- 2}^2 x e^\left| x \right| dx\]

\[\int_0^\pi \cos x\left| \cos x \right|dx\]

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]

\[\int\limits_1^3 \left( 2x + 3 \right) dx\]

\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]

\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]

\[\int\limits_0^1 e^\left\{ x \right\} dx .\]

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 


If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 


\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]


\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Choose the correct alternative:

`int_(-1)^1 x^3 "e"^(x^4)  "d"x` is


Choose the correct alternative:

Γ(1) is


Choose the correct alternative:

If n > 0, then Γ(n) is


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×