Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\, I = \int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]
\[Consider\, x = a \cos 2y\ Then\ y = \frac{1}{2} \cos^{- 1} \left( \frac{x}{a} \right)\]
\[ \Rightarrow dx = - 2a \sin 2y\ dy\]
\[When\, x \to - a ; y \to \frac{\pi}{2}\ and\ x\ \to a ; y \to 0\]
\[\text{Now, integral becomes}, \]
\[ I = \int_\frac{\pi}{2}^0 - 2a \sin 2y\sqrt{\frac{a - a \cos 2y}{a + a \cos 2y}} dy\]
\[ = \int_0^\frac{\pi}{2} 2a \sin 2y \tan\ y\ dy\]
\[ = 2a \int_0^\frac{\pi}{2} 2\sin y \cos y \frac{\sin y}{\cos y}\ dy\]
\[ = 2a \int_0^\frac{\pi}{2} 2 \sin^2\ y\ dy\]
\[ = 2a \int_0^\frac{\pi}{2} \left( 1 - \cos 2y \right) dy\]
\[ = 2a \left[ y - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]
\[ = 2a \left[ \frac{\pi}{2} - \frac{\sin 2y}{2} \right]_0^\frac{\pi}{2} \]
\[ = \pi a\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If f(2a − x) = −f(x), prove that
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
Γ(1) is
Choose the correct alternative:
If n > 0, then Γ(n) is
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`