Advertisements
Advertisements
प्रश्न
उत्तर
Consider
\[f\left( \pi - x \right) = \cos\left( \pi - x \right)\left| \cos\left( \pi - x \right) \right| = - \cos x\left| - \cos x \right| = - \cos x\left| \cos x \right| = - f\left( x \right)\]
\[\therefore \int_0^\pi \cos x\left| \cos x \right|dx = 0 ..................\left[ \int_0^{2a} f\left( x \right)dx = \begin{cases}2 \int_0^a f\left( x \right)dx, & \text{if }f\left( 2a - x \right) = f\left( x \right) \\ 0, & \text{if }f\left( 2a - x \right) = - f\left( x \right)\end{cases} \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
If f (x) is a continuous function defined on [0, 2a]. Then, prove that
Evaluate :
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]
\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]
\[\int\limits_1^4 \left( x^2 + x \right) dx\]
Evaluate the following using properties of definite integral:
`int_(- pi/2)^(pi/2) sin^2theta "d"theta`
Evaluate the following:
`Γ (9/2)`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`