Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]
\[ = \int_0^\frac{\pi}{2} \frac{1 - \cos2x}{2} dx\]
\[ = \frac{1}{2} \int_0^\frac{\pi}{2} \left( 1 - \cos2x \right) dx\]
\[ = \frac{1}{2} \left[ x - \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left( \frac{\pi}{2} - 0 \right)\]
\[ = \frac{\pi}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
`int_0^(2a)f(x)dx`
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
Find : `∫_a^b logx/x` dx
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
Γ(1) is
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`