हिंदी

1 ∫ − 1 ( X + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]
योग

उत्तर

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]

\[\text{Here }a = - 1, b = 1, f\left( x \right) = x + 3, h = \frac{1 + 1}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_{- 1}^1 \left( x + 3 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( - 1 \right) + f\left( - 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ - 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( - 1 + 3 \right) + \left( - 1 + h + 3 \right) + . . . . . . . . . . . . . . . + \left\{ - 1 + \left( n - 1 \right)h + 3 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h\left\{ 1 + 2 + 3 . . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ 2n + n - 1 \right]\]
\[ = \lim_{n \to \infty} 2\left( 3 - \frac{1}{n} \right)\]
\[ = 6\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 4 | पृष्ठ ११०

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty e^{- x} dx\]

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]

\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .

 

\[\int\limits_0^4 x\sqrt{4 - x} dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Choose the correct alternative:

`int_0^oo x^4"e"^-x  "d"x` is


Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`


`int x^3/(x + 1)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×