Advertisements
Advertisements
प्रश्न
उत्तर
\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]
\[\text{Here }a = - 1, b = 1, f\left( x \right) = x + 3, h = \frac{1 + 1}{n} = \frac{2}{n}\]
Therefore,
\[I = \int_{- 1}^1 \left( x + 3 \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( - 1 \right) + f\left( - 1 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ - 1 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( - 1 + 3 \right) + \left( - 1 + h + 3 \right) + . . . . . . . . . . . . . . . + \left\{ - 1 + \left( n - 1 \right)h + 3 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h\left\{ 1 + 2 + 3 . . . . . . . . . + \left( n - 1 \right) \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 2n + h\frac{n\left( n - 1 \right)}{2} \right]\]
\[ = \lim_{n \to \infty} \frac{2}{n}\left[ 2n + n - 1 \right]\]
\[ = \lim_{n \to \infty} 2\left( 3 - \frac{1}{n} \right)\]
\[ = 6\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Write the coefficient a, b, c of which the value of the integral
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
Evaluate: \[\int\limits_{- \pi/2}^{\pi/2} \frac{\cos x}{1 + e^x}dx\] .
\[\int\limits_0^4 x\sqrt{4 - x} dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
`int x^3/(x + 1)` is equal to ______.