हिंदी

2 ∫ 0 X √ X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]

उत्तर

\[Let\ I = \int_0^2 x\sqrt{x + 2}\ d x . \]
\[Let\ x + 2 = t^2 . Then, dx = 2t\ dt\]
\[When\ x = 0, t = \sqrt{2}\ and\ x\ = 2, t = 2\]
\[ \therefore I = \int_\sqrt{2}^2 \left( t^2 - 2 \right) t\ 2t\ dt\]
\[ \Rightarrow I = 2 \int_\sqrt{2}^2 \left( t^4 - 2 t^2 \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^5}{5} - \frac{2}{3} t^3 \right]_\sqrt{2}^2 \]
\[ \Rightarrow I = 2\left[ \left( \frac{32}{3} - \frac{16}{3} \right) - \left( \frac{4\sqrt{2}}{5} - \frac{4\sqrt{2}}{3} \right) \right]\]
\[ \Rightarrow I = 2\left( \frac{16}{15} + \frac{8\sqrt{2}}{15} \right)\]
\[ \Rightarrow I = \frac{16}{15}\left( 2 + \sqrt{2} \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.2 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.2 | Q 16 | पृष्ठ ३९

संबंधित प्रश्न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]

\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]

\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]

\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]

\[\int\limits_0^\pi x \log \sin x\ dx\]

\[\int\limits_0^2 \left( x + 3 \right) dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{15} \left[ x \right] dx .\]

\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 


The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 


If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 


The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 


\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]


\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]


\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]


\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]


\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×