Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^2 x\sqrt{x + 2}\ d x . \]
\[Let\ x + 2 = t^2 . Then, dx = 2t\ dt\]
\[When\ x = 0, t = \sqrt{2}\ and\ x\ = 2, t = 2\]
\[ \therefore I = \int_\sqrt{2}^2 \left( t^2 - 2 \right) t\ 2t\ dt\]
\[ \Rightarrow I = 2 \int_\sqrt{2}^2 \left( t^4 - 2 t^2 \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^5}{5} - \frac{2}{3} t^3 \right]_\sqrt{2}^2 \]
\[ \Rightarrow I = 2\left[ \left( \frac{32}{3} - \frac{16}{3} \right) - \left( \frac{4\sqrt{2}}{5} - \frac{4\sqrt{2}}{3} \right) \right]\]
\[ \Rightarrow I = 2\left( \frac{16}{15} + \frac{8\sqrt{2}}{15} \right)\]
\[ \Rightarrow I = \frac{16}{15}\left( 2 + \sqrt{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is
The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]
\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is: