Advertisements
Advertisements
प्रश्न
उत्तर
\[Let\ I = \int_0^2 x\sqrt{x + 2}\ d x . \]
\[Let\ x + 2 = t^2 . Then, dx = 2t\ dt\]
\[When\ x = 0, t = \sqrt{2}\ and\ x\ = 2, t = 2\]
\[ \therefore I = \int_\sqrt{2}^2 \left( t^2 - 2 \right) t\ 2t\ dt\]
\[ \Rightarrow I = 2 \int_\sqrt{2}^2 \left( t^4 - 2 t^2 \right) dt\]
\[ \Rightarrow I = 2 \left[ \frac{t^5}{5} - \frac{2}{3} t^3 \right]_\sqrt{2}^2 \]
\[ \Rightarrow I = 2\left[ \left( \frac{32}{3} - \frac{16}{3} \right) - \left( \frac{4\sqrt{2}}{5} - \frac{4\sqrt{2}}{3} \right) \right]\]
\[ \Rightarrow I = 2\left( \frac{16}{15} + \frac{8\sqrt{2}}{15} \right)\]
\[ \Rightarrow I = \frac{16}{15}\left( 2 + \sqrt{2} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate each of the following integral:
Evaluate each of the following integral:
\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_2^3 e^{- x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^1 x"e"^(x^2) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(pi/2) sqrt(1 + cos x) "d"x`
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Find `int sqrt(10 - 4x + 4x^2) "d"x`